
NPS-OR-03-005 
 

 
 
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

 
Modeling and Analysis of Uncertain 

Time-Critical Tasking Problems (UTCTP) 
 

by 
 
 

Donald P. Gaver, Jr. 
Patricia A. Jacobs 

Gennady Samorodnitsky 
 

November 2003 
 
 

 
             Approved for public release; distribution is unlimited. 

 
                                             Prepared for:  Office of Naval Research, Math/Computer/Information Sciences 
 800 North Quincy Street, Ballston Tower 1, Code 311 
 Arlington, VA  22217-5660 

                             

  



NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CA  93943-5000 

 
 
 
RADM David R. Ellison Richard Elster 
Superintendent Provost 
 
 
 
This report was prepared for and funded by Office of Naval Research, 
Math/Computer/Information Sciences, 800 North Quincy Street, Ballston Tower 1,  
Code 311, Arlington, VA  22217-5660 
 
Reproduction of all or part of this report is authorized. 
 
This report was prepared by: 
 
 
 
 
DONALD P. GAVER, JR.  PATRICIA A. JACOBS 
Distinguished Professor of  
Operations Research 

 Professor of Operations Research 

   
   
Reviewed by:  GENNADY SAMORODNITSKY 
  Professor of Operations Research 
   
   
   
LYN R. WHITAKER   
Associate Chairman for Research   
Department of Operations Research  Released by: 
   
   
   
   
JAMES N. EAGLE  LEONARD A. FERRARI, Ph.D. 
Chairman  Associate Provost and Dean of Research 
Department of Operations Research   
 

  



 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
November 2003 

3. REPORT TYPE AND DATES COVERED 
Technical Report 

4. TITLE AND SUBTITLE:  Modeling and Analysis of Uncertain Time-Critical 
Tasking Problems (UTCTP) 
6. AUTHOR(S) Donald P. Gaver, Jr., Patricia A. Jacobs, Gennady Samorodnitsky 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER    NPS-OR-03-005 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Office of Naval Research, Math/Computer/Information Sciences 
800 North Quincy Street, Ballston Tower 1, Code 311 
Arlington, VA  22217-5660 

10. SPONSORING / MONITORING 
     AGENCY REPORT NUMBER 

N/A 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 

We consider modeling and operational analysis of a generic asymmetric service-system situation in which (a) Red agents, 
potentially threatening, but possibly requiring assistance, arrive according to some partially known and possibly changing 
pattern in time and space; and (b) Reds are impatient:  have effectively limited unknown deadlines or times of availability for 
Blue service, i.e., detection, classification, and attack in a military setting, or emergency assistance in other settings, such as 
medical care. 

We discuss various service options by Blue service agents and devise several approximations allowing one to compute 
efficiently proportions of tasks of different types that are successfully served or, more generally, if different rewards are 
associated with different types of tasks, the percentage of the possible reward gained. 

We suggest a heuristic policy for a Blue server to select the next task to perform and to decide how much time to allocate 
to that service.  We discuss this and related policies for a number of specific examples. 
 
 
 
 
 
 
 
 
 
 
 
 

15. NUMBER OF 
PAGES  

36 

14. SUBJECT TERMS  Queueing, Random Task Deadlines, Time Critical Tasking, Myopic 
scheduling policy 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UL 

  



Modeling and Analysis of  
Uncertain Time-Critical Tasking 

Problems (UTCTP) 
 
 
 

Donald P. Gaver 
Patricia A. Jacobs 

Operations Research Department,  
Naval Postgraduate School, Monterey, CA  93943 

 
Gennady Samorodnitsky 

School of Operations Research and Industrial Engineering,  
Cornell University, Ithaca, NY  14853 

 
 
 

ABSTRACT 
 

We consider modeling and operational analysis of a generic 
asymmetric service-system situation in which (a) Red agents, potentially 
threatening, but possibly requiring assistance, arrive according to some 
partially known and possibly changing pattern in time and space; and  
(b) Reds are impatient:  have effectively limited unknown deadlines or 
times of availability for Blue service, i.e., detection, classification, and 
attack in a military setting, or emergency assistance in other settings, such 
as medical care. 

We discuss various service options by Blue service agents and devise 
several approximations allowing one to compute efficiently proportions of 
tasks of different types that are successfully served or, more generally, if 
different rewards are associated with different types of tasks, the 
percentage of the possible reward gained. 

We suggest a heuristic policy for a Blue server to select the next task 
to perform and to decide how much time to allocate to that service.  We 
discuss this and related policies for a number of specific examples. 

 

1. The Problem 

 Consider modeling and operational analysis of a generic asymmetrical  

service-system situation in which (a) Red agents, such as, military or facility-destructive 
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hostile threats, arrive according to some partially known and possibly changing pattern in 

time and space; and (b) Reds have effectively limited unknown deadlines, or times of 

availability for Blue service, i.e., detection, classification, and attack in a military setting.  

Cases of known deadlines are important and somewhat analogous; see Lehoczky (1996, 

1997a, 1997b) and Doytchinov et al (2001). 

Think of the Reds as presenting tasks to be performed, or to be subjects of 

service.  In a military context Reds may be perceived as enemy targets, but in a medical 

emergency room setting they’re arriving casualties.  In a call center they are requests for 

information; see Becker et al (2000).  In a Homeland Security (HLS) scenario a Red may 

be a container ship approaching a port, or a truck approaching a border, either possibly 

carrying explosives or chemical-biological offensive agents.  We consider the Blue 

problem of processing such Red tasks effectively and efficiently under time constraints 

and limited information, hence the necessity to control the amount of service given. 

Appropriate service effort typically differs between task types; it may not always 

be completely provided, and may be partial and incomplete, owing to deficiency of time, 

information or resources.  In general, task service is by a Blue force of task-server agents 

also of various types, possibly varying in number and organization, and at different 

locations, but which attempt to share information and the service burden.  Such complex 

agent systems are considered elsewhere, using insights provided in this report. 

Some General Questions:  How to match the Red tasks to currently appropriate 

Blue servers?  How many, and what types of, Blue servers are needed to cope with the 

range of Red demands?  How adequate is Blue service of Red, where “service” here 

means neutralization of threat (or recovery of endangered isolated personnel, such as a 
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downed pilot or downed aircraft human and other valuable and sensitive cargo), or 

stabilization of an injury, or identification and proper “decontamination” of a platform 

carrying dangerous cargo?  There are many examples of the generic and simplified 

situation we consider. 

 The Blue military objective is to successfully service as many tasks as possible 

rather than to minimize queues, while hostile Reds attempt to avoid “service,” at least 

until they can accomplish their purpose, often to damage Blue.  The models presented 

and analyzed suggest Blue force requirements and capability combinations for 

confronting specified challenges with acceptable success rates. 

 To summarize, such service system issues arise ubiquitously in military 

operations of all kinds, as well as in Homeland Security and in military force protection, 

emergency management situations, and many natural hazard response scenarios, such as 

after earthquakes or tidal waves.  They also occur in call center design and operation, 

wherein specialized operators are made available to assist users of new software issues 

(see Becker et al (2000)). 

 The plan of this paper is as follows.  In Section 2, we describe a simple version of 

the basic problem:  A single-type Red task arrival stream confronts a single Blue server 

that can process just one Red task at a time; success probability is related to allocated 

processing time, but is considered fixed/constant for a given selected processing mode.  

The Red tasks each have randomly limited availability time for processing, so if that time 

for a task exceeds any waiting plus service allocation time then service is delivered with a 

possibly successful outcome.  Otherwise, the task is lost (leaks through defenses, or dies 

while awaiting treatment, etc.). 
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 In Section 3, the investigation is broadened to include several task types.  We 

suggest approximations to the proportion of tasks that are successfully served.  We 

examine Blue defense’s decision options so as to achieve maximum success rate,  

i.e., minimum leakage probability.  These are (a) to select for next service the waiting 

task with greatest chance of survival to be serviced, and (b) to allocate service resources 

so as to balance time spent on the currently served task against losing tasks waiting.  

Control Policies are proposed that may then be refined and evaluated by use of heuristic 

search procedures such as Genetic Algorithms, and by adaptations of  

Dynamic Programming. 

 

2. One Red Task-Type vs. Single Blue Service Agent 

Consider the simplest case of a single Blue service-providing agent (BSA) 

confronting a random stream of identical loss-susceptible Red service-requiring agents 

(RSAs). 

Model 1 

Assume first that members of the RSA stream arrive at (enter the sector of) a 

single BSA.  Rate of approach is λ; after arrival the nth-to-arrive RSA has a loss time :  

unless served within time , the task vanishes.  Optionally, 

nL

nL { }nL  is a sequence of 

independently identical distributed random variables, with expectation [ ] 1
nE θ −=L , but 

more generality is possible.  For convenience, may be exponentially distributed 

(Markov) with rate θ.  The BSA assigned service time to each RSA is a constant; this is 

effectively a setup time; a military version is called target mensuration and/or 

deconfliction, and refers to the provision of an estimate of the target/threat location by a 

nL
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human operator using sensor assets plus assurances that friendlies and neutrals are out of 

range; it should also account for weapon transit time to a target.  In medical emergencies 

it may be initial diagnosis and stabilization of a new patient.  We emphasize that in the 

present case it is immaterial whether a service is known to be completed, successfully or 

not, before the assigned service completes.  Realistically, the BSA has the benefit of 

follow-up observations, which in military applications is called Battle Damage 

Assessment (BDA); these are also, realistically, uncertain.  Note that if follow-up can be 

conducted immediately, and service repeated if deemed necessary, the above setup 

replaces a single service attempt by a quick sequence of assigned services:  “Shoot-Look-

Shoot”, in military jargon. 

2.1 Fluid or Deterministic Approximation 

 Let R(t) be the number of RSAs present in the service region, adopting a simple 

fluid/deterministic model for the number of RSA tasks in the system at time t;   

i.e., {R(t), t > 0} is just a real-valued function of continuous time, t.  Then, we write 

     ( ) ( ) ( )
( )

1 ,
1

dR t R t
R t

dt R t
λ θ

τ
= − −

+
                                    (2.1) 

where τ is the constant assigned service time, and the effect of service congestion from 

server saturation is represented by the Filipiak approximation (Filipiak, 1988), the term 

( ) ( )( )1R t R+ t ; clearly this term is ~R(t) for R(t) small, and saturates to ~1 as R(t) 

becomes large, thus reflecting the eventual service rate limitation to 1/τ.  If desired, the 

constant parameters in (2.1) can be made time dependent, and time-dependent versions of 

a problem can be solved numerically, using standard differential equation solvers.  There 

is no convenient closed-form analytical solution for R(t). 
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Steady-State Success Rate 

 Let p(τ) denote the success probability of a task that completes service allocation 

before loss if τ units of time are allocated to service.  Then the success rate satisfies 

             ( ) ( )
( )

( )
1

dS t R t p
dt R t

τ
τ

=
+

.                                          (2.2) 

We can use (2.1) to obtain an approximation to the steady-state average number of tasks 

present in the system by setting the derivative equal to zero and solving for R = R(∞).  

Put ,  ,ρ λ τ γ θ τ= =  

    ( )
( )2

2

1 1
R

4

ρ

γ ρ γ ρ
∞ =

+ − + + − + γρ
.                                    (2.3) 

Substituting the above estimate in (2.2) and remembering that tasks arrive at rate λ , the 

steady-state success probability is estimated by  

    ( ) ( ) ( )( )( ) ( ), , 1F
pP   R R .τλ θ τ
τλ

= ∞ + ∞    (2.3a) 

2.2 A Self-Thinning Approximation for an M/G/1 Model of Success Rate 

 Consider a standard/classical M/G/1 queueing model with a constant service time 

τ  where tasks defect after exponential amount of time with the mean θ –1.  Assume 

defection during service is not observable.  It is shown in Gaver et al (2000) that a good 

approximation to the long-run probability that successful service is achieved is  

       ( )
( ) ( )

( )
2

2,  ,  
1 1 4

P pλ θ τ τ
ρ ρ ρδ θ

=
+ + + −

,     (2.4) 

where ( ) ( )1 e θτδ θ −= − θτ  and ( )p τ  is the probability a task given τ  time units of 

service is successfully completed.  The traffic intensity is ρ = λτ.  An argument for (2.4) 
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appears in Appendix 2.  An analytical/mathematical “exact” approach (forward 

Kolmogorov equation) is detailed in Appendix 1.  The expression (2.4) is remarkably 

convenient and numerically accurate; however, an improvement is also given in 

Appendix 2. 

Suppose task service times have a distribution FS but service completion and task 

loss during service are not observable; then an approximation to the probability of 

successful task completion for a task that enters service is 

    ( ) ( ) ( ) ( )
0

sp e f s ds e F s
τ

θ θττ τ− −= ≥∫ S S τ≡ .   (2.5) 

Analytical Model for Single-Service Success Probability 

 An analytically tractable and flexible expression for ( )F τS  is the Fréchet 

distribution of extreme value theory (qualitatively appropriate here since it approximates 

the distribution of maxima); see Resnick (1987): 

     ( ) ( ) ,F pe
βα ττ −=S      (2.6) 

where the constant p represents the maximum probability of success, achieved as τ→∞; α 

is a scale, and β a shape parameter, both positive; if p<1, FS  is a defective distribution.  

The exponent in the exponential function is unity (1) when α=τ, when the success 

probability becomes  or about one-third of the maximum possible, 

and this independently of β.  For τ<α the exponent increases rapidly as β increases; 

likewise, it decreases rapidly for τ>α with increasing p, representing threshold behavior 

at τ=α. 

( ) 1 0.37 ,F peτ −= =S p
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“Optimum” Single-Server Success Probability 

 Provided a task enters service, i.e., survives wait in the queue, a lower bound on 

the probability that it is successful is given by the RHS of (2.5): 

     ( ) ( ) ( )s e F e pe
βα τθτ θττ τ −− −= =S    (2.7) 

for the present model of (2.6).  There is a unique maximizing value of τ, namely 

  
( )

( )
1 1 .

1
o

β
β ββτ α

θ

+
+ =  

 
,   (2.8) 

which implies 

   ( ) ( )
( )1

# 1o exp
β β

θατ β
β

+

s p
   = − +     

.  (2.9) 

 Under the policy that all tasks that start service receive τ  units of service an 

approximate lower bound to the probability an arriving task will successfully complete 

service is given by the right-hand side of 

   ( ) ( )

( )

( )
( )2

2 ;
,  ,  

;
1 1 4 1

s A
P

B
e θ τ

τ τ θ
λ θ τ

τ θλλ τ λ τ
θ

−
≥ ≡

 + + + − − 

. (2.10) 

The maximizing τ  for the lower bound (2.10) with distribution (2.6) can be found 

numerically.  A first order approximation is (2.8).  Note that the maximizing τ of (2.8) 

does not involve λ.  An improved approximate maximizing τ can be obtained by applying 

one iteration of a Newton procedure to ( ) ( ); / ;d A B
d

θ τ θ τ
τ

    around the original 

approximating τ0.  One iteration of Newton’s procedure evaluated at 0τ  results in 

     
( ) ( )

( ) ( )

0 0
1 0 2

0 02

; / ;

; / ;

d A B
d
d A B
d

θ τ θ τ
ττ τ

θ τ θ τ
τ

  
= −

  

.   (2.11) 
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 The maximizing values of τ from (2.8) for ( )ln 0.9α = −  and 3β =  for various 

values of θ  and λ are displayed in Table 1.  Also displayed is the value of τ resulting 

from one Newton iteration and the resulting lower bounds on the approximate 

probabilities of an arriving task being successfully served.  The table presents the 

approximate probability of successful service estimated for the previously computed τ by 

evaluating (2.4).  Also displayed are the results from simulation of the queueing system 

with Fréchet service times and service truncated at the various computed τ.  Service 

completion is not observed and each served task is given τ units of service; service is 

successful if the service time is less than τ.  Each simulation consists of 50 replications; 

each replication is of 6,000 tasks. 

λ θ Maximizing 
τ  from 
(2.8): τ0 
[One iteration 
of 
Newton: 
τ1] 

Lower Bound on 
the Probability of 
Success using τ0 
in (2.10) 
[Lower Bound on 
the Probability of 
Success for the 
Newton τ1 in 
(2.10)] 

Approximate 
Probability of 
Service Success 
(2.4) for τ0  
[Probability of 
Service Success; 
Simulation of 
system] 
(Std Error) 
 

Approximate 
Probability of 
Service Success, 
(2.4), for Newton 
τ1   
[Probability of 
Service Success; 
Simulation of 
System] 
(Std Error) 

0.1 0.25 0.80 
[0.78] 

0.72 
[0.76] 

0.85 
[0.85] 
(0.0008) 

0.84 
[0.84] 
(0.0007) 

 0.50 0.67 
[0.66] 

0.63 
[0.63] 

0.74 
[0.74] 
(0.0008) 

0.73 
[0.74] 
(0.0009) 

0.5 0.25 0.80 
[0.69] 

0.72 
[0.73] 
 

0.80 
[0.81] 
(0.0007 

0.79 
[0.79] 
(0.0007) 

 0.50 0.67 
[0.61] 

0.60 
[0.60] 

0.70 
[0.70] 
(0.0008) 

0.69 
[0.68] 
(0.0009) 

1 0.25 0.80 
[0.47] 

0.64 
[0.61] 
 

0.72 
[0.74] 
(0.0009) 

0.64 
[0.65] 
(0.001) 

 0.50 0.67 
[0.50] 

0.53 
[0.54] 

0.62 
[0.64] 
(0.001) 

0.58 
[0.60] 
(0.0009) 

Table 1 

 9



Discussion:  The easily computed τ0 performs reasonably well in all cases computed.  

The approximate probabilities of successful task completion also agree partly to very well 

with the simulation results for the actual system using the service policy. 

 2.3 Towards Discrete Optimal Static Service Responses 

 Suppose that a BSA has several service options available against the RSA input 

stream.  Service option  is characterized in terms of setup time, k kτ , and corresponding 

success probability (kp )kτ .  Under some circumstances it is the practice to take several 

simultaneous service actions once setup has been performed; under special conditions 

more than one, e.g., nk, independent service processes may be applied so as to raise the 

effective success probability, in which case, replacement of (kp )kτ  by 1 1  

is justified. 

( )( ) kn
k kp τ− −

 If estimates of task arrival rate, λ, and loss rate, θ, are available, then the optimal 

static response is to select that option, k*, that maximizes the probability of surviving 

without loss to reach the server, surviving service without loss, and actually delivering 

successful service.  Therefore, it is necessary to identify 

  ( )* ,  ,  kk ArgMaxP λ θ τ=  

using, say, (2.4), with ( )p a  replaced with  ( )k kp τ .  This then identifies the appropriate 

service option, which need not be that with highest ( )k kp τ  value. 

Numerical Examples 

 Here are numerical examples that illustrate the models proposed.  Suppose the 

rate of approach is λ = 0.95 and the rate of loss is θ = 1.  Consider the service options 

displayed in Table 2. 
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k\ τk pk Success Probabilities 
   Fluid Self-Thinning Modif. M/G/1 Cond. Prob. Given 

Start Service 
1 0.5 0.8 0.31 0.42 0.43 0.49 
2 0.25 0.7 0.43 0.53 0.53 0.55 
3 0.15 0.6 0.45 0.51 0.51 0.52 

Table 2 

 Probabilistic model probabilities displayed in Table 2 agree to about two 

significant digits; they all concur that k* = 2:  (τ = 0.25, p = 0.7), the intermediate case.  

This choice remains optimal for the probabilistic models even if task arrival rate drops to 

0.75, but the probability of overall success increases. 

 

3.  Several (J ≥ 1) Red Task Types vs. Single Blue Service Agent 

Next, consider a single Blue (BSA) confronting a random stream of different loss 

susceptible RSAs.  The arrival process of RSAs of type j is Poisson (λj) (j is a member of 

(1, . . . J)) independent of the other task types.  Service times for tasks of type j are 

independent and have a distribution jF .   

Assume the times until loss are independent with those for RSAs of type j having 

an exponential distribution with mean 1/ jθ . 

Appendix 3 displays a system of forward Kolmogorov (Takaçs-Beneš) equations 

for the limiting task virtual waiting time for this model.  Successive substitution/iteration 

results in a system of equations for the probability with which a task of type j survives its 

wait in queue for j = 1,…,J.  Approximate probabilities that an arriving task will start 

service are also detailed in Appendix 3. 
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Examples 
 

Although it is possible to obtain the probability an arriving task will start service 

numerically, the calculation can be tedious for more than two task types.  Table 3 

displays results of two approximations for the probability an arriving task will start 

service and the results from a simulation; Bullock (2003).  The simulation results are for 

50 replications with 6,000 tasks of each type per replication.  Both service completion 

and task loss while in service are observable.  Task loss in queue is observable. 

Task 
Type 

Task 
Arrival 
Rate 
(Lambda) 

Task 
Loss 
Rate 
(Theta) 

Means of 
the 
Exponential 
Service 
Times 

Approx. 
Probability 
Arriving 
Task 
Starts 
Service 
(A3-8) 

Approx. 
Probability 
Arriving 
Task Starts 
Service 
Using 
Filtered 
Busy 
Period 
(A3-17) 

Simulation 
Fraction of 
Tasks to 
Start  
Service 
(Std error 
50 
replications) 

1 0.10 1 1 0.78 0.81 0.78 
(0.0007) 

2 0.10 0.5 3 0.83 0.89 0.84 
(0.0007) 

3 0.10 0.25 5 0.88 0.97 0.89 
(0.0006) 

1 0.30 1 1 0.47 0.45 0.46 
(0.001) 

2 0.30 0.5 3 0.55 0.62 0.57 
(0.001) 

3 0.30 0.25 5 0.65 0.87 0.70 
(0.0009) 

1 0.75 1 1 0.22 0.13 0.13 
(0.001) 

2 0.75 0.5 3 0.28 0.25 0.25 
(0.001) 

3 0.75 0.25 5 0.37 0.60 0.43 
(0.001) 

Table 3 
 

Discussion:  The first approximation appears to do well for lightly loaded systems.  The 

approximation that thins the arrivals during a busy period appears to do better for heavily 
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loaded systems.  The minimum of the two approximations gives very reasonable 

agreement with the simulation results for the cases studied. 

 
3.1 Myopic Policies for Choice of Next Task Type to Serve and Amount of 
Service to Provide 

Suppose that loss during service and the completion of service are not observable.  

A policy is to serve a task of type j for a time jτ .  If the task’s service time is less than 

jτ , then the task is served successfully; otherwise, it is served unsuccessfully.  A 

successfully served task of type j, results in a reward jr . 

The question:  Allocate service time ( )j nτ  to a type j task as a function of the number of 

tasks of various types in queue; where ( )1 2, ,..., Jn n= n n  with jn  being the number of 

tasks of type j waiting in queue.  Choose the next type of task to serve and the amount of 

time to give it so as to maximize the long run average reward. 

Suppose we allocate 0jτ >  units of time to a waiting task of type j.  The expected 

reward received is  

( ) (
0

, ;
j

j y
E j j j )R j n r e F dy

τ
θτ −= ∫ .   (3.1) 

The expected reward leaving service during the service time is 

( )
( ) ( ) (

( )
1

, ;

1 ; ;

;

L j

)j j j j j j k k j j k
k j

J

k k j j k
k

R j n

r r n A r n A

r B

τ

τ θ τ

λ τ θ

≠

=

= + − +

+

∑

∑

θ ,  (3.2) 
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where  

( ); 1jA e θ ττ θ − = − 

( )

     (3.3) 

{ }exp1, 1jB τ θ τ
θ

= − − θ τ−   .   (3.4) 

The myopic policy is to select that j and jτ , which maximizes the proportion of expected 

reward stream gained during the next service time. 

( ) ( )( ) ( )
( )00

,

, ;
, arg max

, ;j

E j
j

j L j

R j n
j n n

R j nτ

τ
τ

τ
= .   (3.5) 

The policy is myopic because it only optimizes the immediate gain.  Similar policies can 

be obtained for cases in which the service completion is observable and/or the loss of a 

task during service is observable, etc.  Discussion and study of non-myopic policies 

appear elsewhere. 

Examples 

All service times and impatience times are independent and exponentially 

distributed.  There are two task types that arrive according to independent Poisson 

processes.  Task losses while waiting and while being served are observed.  Task service 

completion is also observed.  In either case, a new task can begin immediately.  The 

myopic policy determines the next task type to be served and the length of the service 

time to give it.  If a task has not completed service when its allocated service time is over, 

it departs and no reward is collected. 

Results from a simulation are shown in Table 4.  Each simulation replication is 

for 100 time units.  The number of replications for cases with larger arrival rates is 100.  

The number of replications for cases with smaller arrival rates is 500.  The FIFO policy 

 14



serves the first task in the queue until the task is served to completion.  The smart FIFO 

serves the first task in the queue until time t where τ is the value that maximizes (3.5).  

The myopic policy serves that task which maximizes (3.5). 

   Reward Task 1=3 
Reward Task 2=1 

Reward Task 1=1 
Reward Task 2=3 

Arrival 
Rate 
Task1 
[Task2] 

Mean 
Impatience 
Time 
Task 1 
[Task 2] 

Mean 
Service 
Time 
Task 1 
[Task 2]  

Mean 
Percent 
Reward 
Received 
FIFO 
(Std. Error) 

Mean 
Percent 
Reward 
Received 
Smart FIFO 
(Std. Error) 

Mean 
Percent 
Reward 
Received 
Myopic 
(Std. Error) 

Mean 
Percent 
Reward 
Received  
FIFO 
(Std. Error) 

Mean 
Percent 
Reward 
Received 
Smart FIFO 
(Std. Error) 

Mean 
Percent 
Reward 
Received 
Myopic 
(Std. Error) 

0.1 
[0.2] 

1 
[2] 

1 
[1.5] 48.48 (0.45) 46.58 (0.46) 48.35 (0.49) 53.04 (0.44) 48.03 (0.44) 52.29 (0.44)

0.25 
[0.50] 

1 
[2] 

1 
[1.5] 41.96 (0.47) 39.26 (0.45) 43.7  (0.44) 46.5  (0.49) 42.09 (0.5) 46.95 (0.5) 

0.5 
[1] 

1 
[2] 

1 
[1.5] 32.96 (0.35) 32.51 (0.33) 35.18 (0.34) 38.1  (0.34) 34.51 (0.32) 38.1  (0.33) 

1 
[2] 

1 
[2] 

1 
[1.5] 20.8  (0.32) 21.51 (0.3) 25.51 (0.3) 25.33 (0.36) 22.67 (0.3) 25.92 (0.35)

2 
[4] 

1 
[2] 

1 
[1.5] 8.92  (0.14) 10.46 (0.17) 17.88 (0.21) 13.3  (0.18) 13.69 (0.19) 14.25 (0.18)

4 
[8] 

1 
[2] 

1 
[1.5] 3.96   (0.06) 4.31  (0.07) 12.54 (0.14) 6.91  (0.09) 7.02  (0.09) 7.08  (0.1) 

8 
[16] 

1 
[2] 

1 
[1.5] 1.87  (0.03) 1.79  (0.02) 7.47  (0.08) 3.57  (0.04) 3.56  (0.04) 3.62 (0.05) 

         
0.1 
[0.2] 

5 
[4] 

1 
[1.5] 74.21 (0.41) 70.13 (0.41) 73.8  (0.41) 69.19 (0.4) 64.77 (0.43) 69.53 (0.4) 

0.25 
[0.50] 

5 
[4] 

1 
[1.5] 65.33 (0.5) 62.05 (0.48) 66.29 (0.46) 60.27 (0.48) 51.16 (0.47) 61.26 (0.47)

0.5 
[1] 

5 
[4] 

1 
[1.5] 48.4 (0.4) 47.9  (0.41) 54.35 (0.41) 44.42 (0.41) 42.24 (0.36) 46.27 (0.39)

1 
[2] 

5 
[4] 

1 
[1.5] 27.86 (0.38) 28.42 (0.38) 41.45 (0.35) 24.09 (0.35) 24.82 (0.32) 28.65 (0.36)

2 
[4] 

5 
[4] 

1 
[1.5] 14.66 (0.2) 15.11 (0.21) 27.94 (0.25) 11.73 (0.14) 12.44 (0.16) 14.48 (0.18)

4 
[8] 

5 
[4] 

1 
[1.5] 8.02  (0.09) 8.52  (0.13) 14.71 (0.15) 5.95  (0.07) 6.02  (0.08) 7.1  (0.08) 

8 
[16] 

5 
[4] 

1 
[1.5] 4.1  (0.06) 4.5  (0.06) 7.46  (0.08) 2.79  (0.04) 2.87  (0.04) 3.54  (0.05) 

Table 4 
 

Discussion:  Not surprisingly, the three policies perform about the same for lightly loaded 

systems.  For lightly loaded systems, FIFO results in larger percentage of rewards 

because all tasks that start service are given a full service time.  For heavier loaded 
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systems, FIFO and smart FIFO perform about the same.  In heavier loaded systems, 

giving priority to a task type becomes more important. 

3.2 A Simulation Study of the Effect of Task Priorities and Service Discipline 
on Task Completion 

 In this section, the effect of different task priorities and service disciplines are 

explored using simulation. 

 Tasks arrive according to a Poisson process with rate 3.5.λ =   Tasks are of type 1 

with probability 0.5 and of type 2 otherwise.  A task of type 1 requires service of length 

.  A task of type 2 requires a service of length 1 0.2a = 2a 0.5= .  Thus, [ ] 1.23Eρ λ= =S  

where S is the service time of an arriving task.  Each arriving task is lost after an 

independent random length of time.  In this model, losses during service are not 

observable.  Two distributions of task loss times are considered: the uniform and the 

exponential.  All simulation with the same task loss time distributions, use the same 

simulated arrival times, task types, and task loss times; the difference between the 

replications is the service discipline and task priority.  Table 5 displays the simulated 

fractions of tasks completed using different service disciplines and task priorities.  Each 

simulation replication consists of 2,000 tasks. 
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Traffic Intensity=1.23 

Distribution of 
loss times for 
tasks of type 1 

Distribution of 
loss times for 
tasks of type 2 

Choice 
of next 
task to 
serve 

Task 
type 
with 
priority 

Frac. of 
tasks that 
complete 
(std. error 
computed as 
if observ. 
are indep.) 

Frac. of 
tasks of 
type 1 that 
complete 
(std. error 
computed 
as if 
observ. are 
indep.) 

Frac. of 
tasks of 
type 2 that 
complete 
(std. error 
computed 
as if 
observ. are 
indep.) 

Exponential 
with mean 1 

Exponential 
with mean 3.33

FCFS 2 0.53
(0.01)

0.32 
(0.01) 

0.73 
(0.01) 

  FCFS 1 0.64
(0.01)

0.65 
(0.02) 

0.63 
(0.02) 

  LCFS None 0.60
(0.01)

0.50 
(0.02) 

0.68 
(0.01) 

  FCFS None 0.56
(0.01)

0.42 
(0.02) 

0.69 
(0.01) 

       
Uniform on 
(0.5, 1.5) 
(2,000 tasks) 

Uniform on 
(2.83, 3.83) 

LCFS 1
0.79

(0.01)
0.90 

(0.01) 
0.68 

(0.01) 
  

FCFS 2
0.58

(0.01)
0.21 

(0.01) 
0.95 

(0.01) 
  

LCFS 2
0.60

(0.01)
0.30 

(0.01) 
0.91 

(0.01) 
  

FCFS 1
0.73

(0.01)
0.93 

(0.01) 
0.51 

(0.02) 
  

LCFS None
0.71

(0.01)
0.64 

(0.02) 
0.79 

(0.01) 
  

FCFS None
0.56

(0.01)
0.23 

(0.01) 
0.90 

(0.01) 

Table 5 

Discussion:  The approximating filtering model for exponential times to loss results in the 

probability that a task of type 1 survives the queue is equal to 0.626 and the probability a 

task of type 2 survives the queue is 0.703.  For exponential times to loss, the probability a 

task 1 that starts service is not lost during service is 0.82.  The probability a task of type 2 

that starts service is not lost during service is 0.86. 

Exponential loss times result in a task’s position in the queue giving no 

information on the remaining time until the task is lost.  Thus, there is no statistical 

difference in the fraction of tasks completed successfully between first come first served 
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(FCFS) and last come first served (LCFS).  Since the mean loss time for task 1 is less 

than that for task 2, task 1 gets priority results in a greater fraction of tasks successfully 

completed.  The myopic policy of Section 4, when the reward for successful completion 

of both tasks is 1, is to give task 1 priority.  Notice that with no priorities, the LCFS 

discipline outperforms the FCFS discipline in spite of exponentially distributed deadlines.  

This behavior is a consequence of the different mean impatience times:  the longer a task 

stays in the system, the more likely it is to be of type 2. 

Uniform loss times result in a task’s position in the queue giving information on 

the remaining time until the task is lost.  The mean loss time for task 1 is less than that for 

task 2, and task 1 has a shorter service time than task 2.  Thus, the best policy is to give 

task 1 priority with the service discipline LCFS.  The phenomena noted for this case also 

apply for systems with smaller traffic intensities. 

 

4. Concluding Remarks 

Modeling uncertain time-critical service systems is a difficult, but vitally 

important, practical problem.  Exact computations are often either impossible or very 

challenging computationally, especially with multiple task types.  Special challenges are 

present when deciding on a service policy in order to make the system as efficient as 

possible. 

In this paper, we have presented several approximation procedures that are 

computationally easy and, at least in the examples we have looked at, provide valuable 

information about the efficiency of the service system under different service options.  
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An important feature of these approximations is that they stay computationally feasible 

even for many task types and/or heavily loaded systems. 

We have also introduced a heuristic myopic service policy that attempts to 

maximize locally the system efficiency.  This policy has performed well under scenarios 

we have considered.  

A number of important issues are left for future work.  One such issue is 

improving the myopic policies into (approximately) optimal policies.  A possible 

approach is a dynamic programming-based procedure that is being developed in 

Samorodnitsky, Gaver, and Jacobs (2003).  Another untouched issue is that of  

non-stationarity:  What happens if the parameters of the system change with time, and 

need to be constantly estimated in order to update the service policy and keep the system 

running efficiently?  We hope to address the latter question in the near future. 
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APPENDIX 1 
Modified Takaçs-Beneš Equations with Exponential Refusal/Reneging 

Let tasks arrive at a service facility according to a Poisson process with rate λ. 

Service times are independent and identically distributed.  Let W(t) be the total virtual 

work in the system at time t.  Each task has a deadline that is exponentially distributed 

with mean 1/θ :  if the waiting time or virtual work present when the task arrives exceeds 

the deadline, the task does not enter the system.  This is equivalent to the situation in 

which tasks whose deadlines have elapsed when they reach the server are not served; see 

e.g., Baccelli et al (1984) and Ward et al (2001).  We will then use a modification to 

obtain an approximation for the situation in which a deadline may also elapse during 

service. 

A.1 Statistically Identified Deadlines and Service to Completion 

We start with sketching an argument for derivation of the steady state probability 

that an arriving task will be successfully served. Let the steady state distribution function 

of W(t) be  

 ( ) ( ){ }; ;F x t P t xθ = ≤W W . (A1-1) 

A standard renewal theoretical argument shows that ( );WF θ⋅  has a right continuous 

density ( ; )p z θ  on .  Express this as  (0, )∞

 , (A1-1a) ( ) ( ) ( )0
0

; ; ; ; ;
x

F x t p t p z t dθ θ θ= + ∫W z

where 

 ( ) ( ){ }0 ;p t P tθ 0= =W . (A1-1b) 

Since, given W(t), the task joins the queue with probability e , the probability its 

deadline does not expire while in queue, one can write  

t−θW b g
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( ) ( )[ ]

( )( ) ( ) (
0

; ; 1

1 ) ;
x

y y

F x F x t t

t e e B x y F dy oθ θ

θ θ λ

λ θ− −

= + ∆ − ∆

+ ∆ − + − + ∆∫

W W

W )t

);

 (A1-2) 

where B is the distribution function of the positive service time C.  Dividing by and 

letting we obtain 

t∆

0t∆ ↓

 

                          ( ) ( )( ) (
0

; 1
x

yp x e B x y F dyθθ λ −= − −∫ W θ

)

                                      (A1-3) 

Use Laplace transforms  

                                ( ) (
0

; ;sxs e dF xψ θ θ
∞ −= ∫ W  and b s .  ( )*

0
( )sxe B dx

∞ −= ∫

Then (A1-3) implies 

 ψ θ θ ρψ θ θ δs p s;a f a f a f as; f= + +0 , (A1-4) 

where 

 δ s
b s

sE
b g b g

=
−1 *

C
. (A1-5) 

Substituting yields ψ(0; θ) = 1 = p0s = 0 ( )θ  + ρψ(θ; θ), hence  

 . (A1-6) ( ) [ ]0 1 ; 1p E e θρψ θ θ λ − = − = −  
W CE

Iterative solution to the equation (A1-4)  

Since  

 ,  

it follows that, putting s = nθ  and defining ( ) ( );ψ θ ψ θ θ≡ , we have   

ψ θ ρψ θ θ ρψ θ θ δs s s; ; ;a f a f a f a f= − + +1

                                 ( ) ( ) ( ) ( ), 1 ( 1) ;n n nψ θ θ ρψ θ ρψ θ θ δ θ = − + +  .  
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An inductive argument gives us   

 
( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )
0, ; 0, ;

1 ; ; ,

A A n A A

n A n

nψ θ θ θ ρψ θ θ

ρψ θ θ θ

= + + − + + θ  
+ +

K K
 (A1-6a) 

where  

 
A

A n n nn

0 1

1

,

; .

θ

θ ρ δ θ δ θ δ θ

a f
a f a f a fb g a f

=

= − ×K×
 (A1-6b) 

For θ > 0, A(n;θ ) → 0.  Thus, the probability that an arriving task joins and survives the 

queue before deadline elapse is  

 ψ θ
θ

ρ θ
a f

a f

a f
=

+

=

∞

=

∞

∑

∑

A k

A k

k

k

;

;

0

0

1
. (A1-7) 

It is clear that the infinite sum converges faster than exponentially fast for θ > 0, and that 

this is true for any ρ-value. 

Further, for any s  

 ( ) ( ) (
0

; 1 ;
k

s )C k sψ θ ρψ θ
∞

=

 = −  ∑ , (A1-8) 

where  

 C k s s i kk

i

k

;a f a f= + , ≥
=

−

∏ρ δ θ
0

1

1 (A1-9) 

and  

 C(0; s) = 1.  

A.2  Services Subject to Detectable Exponential Deadline 

If a task deadline’s elapse is detectable during service and the task is then 

terminated, then the distribution of service time, C, must be replaced by that of  

CT = min(C, deadline), the allowed service time.  Consequently, the service times that 
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contribute to the virtual waiting time are, thanks to the exponential deadline assumption, 

iid with mean  

 [ ]
1

T

E e
E

θ

θ

− −  =
C

C  (A1-10) 

and tail-transform now  

 ( )
( )

( ) [ ]
( )

( )
1

;
s

T
T

E e s
s

s E

θ
δ θ

δ θ
θ δ θ

− + − +  = =
+

C

C
. (A1-11) 

These replace E[C] in ρ, and δ(s) in the previous solution, (A1-7). 
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APPENDIX 2 
Approximations to Queue Survival for the M/G/1 System with  

Deadline-Sensitive Delay (The “Self-Thinning” Approximation) 

Consider the arrival of tasks with exponentially (mean 1/θ ) distributed deadlines. 

Given the virtual waiting time, W(t), at the time of the arrival of a task, the probability 

that the deadline of the task will not elapse before reaching the server, is simply e .  

Instead of letting the task join the queue and then defect if the deadline does elapse before 

entering service, the same outcome is achieved by simply accepting the task into the 

queue with probability e .  Based on that, we propose two approximations to the 

proportion of tasks that are successfully served. 

( )tθ− W

( )tθ− W

Approximation I 

If W has the steady state virtual workload distribution, then the probability that an 

arriving task is successfully served is ( ) Ee θψ θ −= W .  We neglect the dependence 

between the fates of different tasks by pretending that the outcomes are decided via a 

sequence of independent coin tosses with success probability ( )ψ θ

)

.  The resulting 

system becomes an M/G/1 queue with traffic intensity (ρψ θ .  Then the success 

probability ( )ψ θ  should approximately satisfy the Pollaczek-Khinchine (P-K) formula 

for M/G/1 queues: 

 

 ( ) ( ) [ ]

( ) [ ] [ ]

1
.

1
1

E
E e

E e
E

E

θ
θ

ψ θ λ
ψ θ

ψ θ λ
θ

−
−

−    ≡ =    −  −     
  

W
C

C

C
C

 (A2-1) 

The simple formula differs somewhat from the solution (A1-7) of the modified  

Takaçs-Beneš equation for the same assumed arrival-queue interaction; but is in handy 

closed form.   
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The expression (A2-1) is a quadratic in the desired probability, the solution of 

which is  

 ψ θ
ρ ρ ρδ

a f
a f a

=
+ + + −

2

1 1 42 θ f
, (A2-2) 

where [ ]Eρ λ= C  as usual, and ( )δ θ  given by (A1-5) is the transform of the 

service/completion time tail or survivor distribution.  The approximate probability of 

successful transit to the server given by this simple expression is unity when θ → 0  

(no degradation, or infinite deadline), as long as ρ < 1; if θ → ∞ then, since deadlines are 

now stringent, the only hope of initiating service is to arrive when there is no server 

activity, i.e., with probability 1/(1 + ρ), and this time any (positive) ρ-value is permitted.  

In general, there are no restrictions on ρ in (A2-2):  a long queue generates many 

rejections, and thus does not ever remain long, or grow indefinitely.  Empirically, the 

simple expressions, (A2-2) and (A2-9), supply a lower bound that has been shown 

numerically to be a good approximation to the exact solution of such a reneging or 

refusal model.  Note that the same logic gives as an approximation for the transform of 

virtual waiting time of non-refused tasks, W, the formula 

 ψ ξ θ
λψ θ

λψ θ
ξ

ξ
;b g b g

b g
=

−

−
−RS|
T|

U
V|
W|

−

1

1
1
E

E
E e
E

C

C
C

C
. (A2-3) 

Approximation II 

A refined version of Approximation I accounts for the different experience of a 

new task that arrives to find the server busy (W > 0), as contrasted to one that arrives to 

find it idle (W = 0).  Put  

 ψ θ θ
+

−=b g E e W W 0>  (A2-3) 
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the marginal long-run rate of task acceptance given that the server is busy.  From the 

Pollaczek-Khinchine formula  

 
E e

s
s

s
s

s− > =
−
−

L
NM

O
QP

=
−
−

W W 0
1
1

1

1
1

ρ ρδ
ρδ ρ

ρ δ
ρδ

b g b g
b g

b g b g
b g .

 (A2-4) 

We view ρ  in this expression as the traffic intensity during a busy period.  Then 

the same logic as the one used in derivation of Approximation I says that the acceptance 

probability during a busy period ( )ψ θ+  should approximately satisfy the above 

expression with ρ  replaced by ( )ρψ θ+ .  This results in the equation  

 ψ θ ρψ θ
δ θ

ρψ θ δ θ+ +
+

= −
−

b g b gc h b g
b g b g1

1
. (A2-5) 

In other words, an auxiliary randomization (biased coin flip) adjusts for the imposition of 

the deadline, as before in Approximation I, but in a somewhat more refined manner.  The 

solution of (A2-5) is  

 ψ θ
δ θ

ρδ θ ρδ θ ρδ θ
+ =

+ + + −
b g b g

b gc h b gc h b g
2

1 1 4
2 2

. (A2-6) 

For such a ψ+-filtered system the expected duration of a busy period, E[B], should satisfy 

 

                          
[ ] [ ] ( ) [ ]

[ ] ( )( )1 .

E E E

E

ρψ θ

ρψ θ
+

+

= +

= −

B C

C

B
                                   (A2-7) 

Consequently, an alternating renewal process argument gives us, as the long-run 

proportion of time that the server is idle, 

 P
E

W
B

= =
+

=
−

+ −

−

−
+

+

0
1

1 1

1

1l q b g
b g

λ
λ

ρψ θ
ρ ψ θ

. (A2-8) 
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Now the probability that an arriving task is admitted (not refused, and eventually served) 

is  

 

ψ θ ψ θ

ρ ψ θ

2 0 1 0

1
1 1

b g l q l qc h b g

b g

= = + − =

=
+ −

+

+

P PW W

,
 (A2-9) 

which differs from (A2-2) owing to the more refined conditioning imposed. 

Approximation II improves somewhat on Approximation I in all cases explored 

numerically to date. 
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APPENDIX 3 
Solution to a Modification of the Takaçs-Beneš Equation for  

Multiple Task Types 
 

Consider a generalization of the model in Appendix 1. Tasks from J task classes 

arrive to a service facility according to independent Poisson processes with rate λj for the 

jth task class; let 
1

J

j
j

λ λ
=

= ∑ .  Service times are independent, and service times for each 

task class are identically distributed.  Each task of the jth class has an exponentially 

distributed deadline with the mean 1/ jθ , with the usual independence assumptions.  Once 

again, we start with the case where tasks whose deadlines have elapsed when they reach 

the server are not served, but no defection occurs while in service.  Equivalently, a task 

whose deadline is shorter than the waiting time at the moment of arrival, does not enter 

the system.  Arguments analogous to those in Appendix 1 show that the Laplace 

transform of the steady state virtual waiting time in the system satisfies  

 ( ) ( ) ( ) ( )0; j j j
j

s p s sψ ρ δ ψ= + + ;θ∑θ θ θ , (A3-1) 

where  

 ( ) ( )*1 j
j

j

b s
s

s E
δ

−
=

  C
, (A3-2) 

with ρj = λjE[Cj], and *( ) [ ]j
j

sE e−= Cb s .  Here C is a generic service time of a class j j  

task; put 
1

J

j
j

ρ ρ
=

= ∑ .  Furthermore,  

 ( ) ( )0 1 j j
j

p ρ ψ θ= − ;∑θ θ . (A3-3) 
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An iterative procedure similar to the one used in Appendix 1 shows that the probability 

( ) ( ; )j jψ θ ψ θ≡ θ  that a task of type j will start service (not be lost while in queue) 

satisfies, for each , the equation 1,2,...n =

 

( ) ( )

( ) ( )

1

( ) (0, ) ... ( , )

(0, ) ... ( , ) ( ) ( 1; ),

j j
j

J
j j

i i j
i

A A n

A A n E n

ψ θ θ θ

θ θ ρψ θ θ
=

= + +

 − + + + + ∑
 (A3-4) 

where 

( )( )j θ =

+ +( )
1 1 2 2 1 1 1

1 2

( )

1 1 1

0, 1

; ( ) ( )... ( ... )
n n n

n

J J J
j

k k j k k j k k k j k k
k k k

A

A n θ ρ δ θ ρ δ θ θ ρ δ θ θ θ
−

= = =

= + +∑ ∑ ∑
        

and 

 ( )
1 1 1 1 1 1

1

( )

1 1
; ( )... ( ... ) ( ... )

n n n n n

n

J J
j

k k j k k j k k j k k k
k k

E n θ ρ δ θ ρ δ θ θ θ ψ θ θ θ θ
− −

= =

= + + + + +∑ ∑ + +

i i

 

for .  As in Appendix 1,  as , and we obtain a system of 

linear equations for success probabilities  

1, 2,...n = ( ) ( ; ) 0jE n θ → n → ∞

 ( ) ( )

0 0 1
( ) ( ; ) ( ; ) ( )

J
j j

j
k k i

A k A kψ θ θ θ ρ
∞ ∞

= = =

= −∑ ∑ ∑ ψ θ  (A3-5) 

for 1,...,j J= , which we can solve by replacing the infinite sums by their finite 

approximations. 

A computationally attractive approximation to the solution to the equations  

(A3-5) is as follows.  We start with a self-thinning approximation to the entire 

aggregation of tasks.  Let p be the overall proportion of tasks that start service.  Suppose 

we thin arriving tasks with probability p. Then the transform of the virtual waiting time in 

the queue is 
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1

1

1

1
1

j

J

j j
js

s
J

j
j

p E

E e
E e

p
s

λ

λ

=−
−

=

 −  
  =    −    −  

  

∑

∑

W
C

C

.   (A3-6) 

On the other hand 

( )
( )

1

1

1

1 1

1 .
1

j
J

j
J

j
k

k

J
j

J J
j

k k k j
k k

p E e

p B p
p

θλ

λ

λ ρ

λ ρ δ θ

−

=

=

=

= =

 =   

 
 

− = ≡ 
− 

  

∑
∑

∑
∑ ∑

W

   (A3-7) 

Note, then ( )B p  is decreasing in p on [0,1/ ρ ] and is always between 0 and 1.  Hence, 

the Equation (A3-7) always has a unique solution p%  in [0,1].  The approximation for the 

probability a task of type j starts service is  

( )
( )

1

1

1

j
j J

k k j
k

pE e
p

θ ρψ θ
ρ δ θ

−

=

− = =  
− ∑

W %

%

.    (A3-8) 

A more refined approximation makes use of the fact that the task that arrives 

when the server is idle always starts service.  First of all,  

{ } { }0 1 0 | 0s sE e P P E e− −  = = + − = >    
W WW W W 

 .  (A3-9)  
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Hence, using the P-K formula for sE e− 
 

W  results in 

( )

( )

1

1

1| 0
1

J

j j
js

J

j j
j

s

E e
s

ρ δ
ρ

ρ
ρ δ

=−

=

− > = 
−

∑

∑
W W .            (A3-10) 

If a proportion p of tasks arriving during a busy period gets to the server, our usual  

self-thinning approximation results in  

( )

( )
1

1

1| 0
1

J

j j
js

J

j j
j

s
pE e

s

ρ δ
ρ

ρ
ρ δ

=−

=

− > = 
−

∑

∑
W W .           (A3-11) 

Thus, p has to satisfy the relation 

   

( )

( )
1

1

1

1

| 0

1 .
1

j
J

j

j

J

k k jJ
j k

J
j

k k j
k

p E e

p

θλ
λ

ρ δ θ
λ ρ
λ ρ

ρ δ θ

−

=

=

=

=

 = >  

−
=

−

∑

∑
∑

∑

W W

             (A3-12) 

The same argument as before shows that this equation has a unique solution bp%  in 

(0,1 )1ρ −∧ . 

 Let 

( )
( )

( )
1

1

1

1

1

J

k k jJ
j b k

j J
j

k k j
k

p
ρ δ θ

λ ρ
ψ θ

λ ρ
ρ δ θ

=
+

=

=

−
=

−

∑
∑

∑

%
             (A3-13) 

for j=1,…, J. 
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 The expected length of a busy period satisfies the approximate relation 

[ ] [ ]
1

J
j

j b
j

E E p
λ

ρ
λ=

 = + ∑B C % E B               (A3-14) 

and so, approximately, 

[ ] 1

1-

J
j

j
j

b

E

E
p

λ
λ

ρ
=

  
=

∑ C

B
%

.              (A3-15) 

Since 

{ }
[ ]

1

10P
E

λ
λ

−

−= =
+

W
B

              (A3-16) 

our final approximation is  

( ) { } ( ) { }

( )
( )

0 0

1
.

1 1

B j j

b j

b

P P

p

p

ψ θ ψ θ

ρ ρ ψ θ

ρ

+

+

= > +

− +
=

+ −

W W

%

%

=

             (A3-17) 
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